The mice
function is one of the most used functions to
apply multiple imputation. This page shows how functions in the
psfmi
package can be easily used in combination with
mice
. In this way multivariable models can easily be
developed in combination with mice.
You can install the released version of psfmi with:
And the development version from GitHub with:
You can install the released version of mice with:
library(psfmi)
library(mice)
#>
#> Attaching package: 'mice'
#> The following object is masked from 'package:stats':
#>
#> filter
#> The following objects are masked from 'package:base':
#>
#> cbind, rbind
imp <- mice(lbp_orig, m=5, maxit=5)
#>
#> iter imp variable
#> 1 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
data_comp <- complete(imp, action = "long", include = FALSE)
library(psfmi)
pool_lr <- psfmi_lr(data=data_comp, nimp=5, impvar=".imp",
formula=Chronic ~ Gender + Smoking + Function +
JobControl + JobDemands + SocialSupport, method="D1")
pool_lr$RR_model
#> $`Step 1 - no variables removed -`
#> term estimate std.error statistic df p.value
#> 1 (Intercept) -0.28220786 2.59044374 -0.10894190 66.59928 0.913576151
#> 2 Gender -0.32715382 0.41608416 -0.78626837 144.61088 0.432996799
#> 3 Smoking 0.08610993 0.33952876 0.25361602 149.48937 0.800140692
#> 4 Function -0.14122074 0.04330286 -3.26123318 141.82870 0.001389359
#> 5 JobControl 0.00739019 0.02042907 0.36174879 99.13976 0.718309637
#> 6 JobDemands 0.00381906 0.04029635 0.09477434 63.85366 0.924790859
#> 7 SocialSupport 0.04998725 0.05664256 0.88250346 144.86552 0.378966653
#> OR lower.EXP upper.EXP
#> 1 0.7541169 0.004282034 132.8089219
#> 2 0.7209728 0.316780569 1.6408893
#> 3 1.0899261 0.557225439 2.1318822
#> 4 0.8682976 0.797061688 0.9459001
#> 5 1.0074176 0.967398466 1.0490922
#> 6 1.0038264 0.926180900 1.0879812
#> 7 1.0512577 0.939915458 1.1757895
Back to Examples
library(psfmi)
library(mice)
imp <- mice(lbp_orig, m=5, maxit=5)
#>
#> iter imp variable
#> 1 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
data_comp <- complete(imp, action = "long", include = FALSE)
library(psfmi)
pool_lr <- psfmi_lr(data=data_comp, nimp=5, impvar=".imp",
formula=Chronic ~ Gender + Smoking + Function +
JobControl + JobDemands + SocialSupport,
p.crit = 0.157, method="D1", direction = "FW")
#> Entered at Step 1 is - Function
#>
#> Selection correctly terminated,
#> No new variables entered the model
pool_lr$RR_model_final
#> $`Final model`
#> term estimate std.error statistic df p.value OR
#> 1 (Intercept) 1.2018264 0.48445997 2.480755 93.19999 0.01490410 3.3261863
#> 2 Function -0.1370412 0.04344631 -3.154265 79.88828 0.00226793 0.8719343
#> lower.EXP upper.EXP
#> 1 1.2710103 8.7045047
#> 2 0.7997117 0.9506794
Back to Examples