The mice
function is one of the most used functions to
apply multiple imputation. This page shows how functions in the
psfmi
package can be easily used in combination with
mice
. In this way multivariable models can easily be
developed in combination with mice.
You can install the released version of psfmi with:
And the development version from GitHub with:
You can install the released version of mice with:
library(psfmi)
library(mice)
#>
#> Attaching package: 'mice'
#> The following object is masked from 'package:stats':
#>
#> filter
#> The following objects are masked from 'package:base':
#>
#> cbind, rbind
imp <- mice(lbp_orig, m=5, maxit=5)
#>
#> iter imp variable
#> 1 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
data_comp <- complete(imp, action = "long", include = FALSE)
library(psfmi)
pool_lr <- psfmi_lr(data=data_comp, nimp=5, impvar=".imp",
formula=Chronic ~ Gender + Smoking + Function +
JobControl + JobDemands + SocialSupport, method="D1")
pool_lr$RR_model
#> $`Step 1 - no variables removed -`
#> term estimate std.error statistic df p.value
#> 1 (Intercept) 0.1969517386 2.44029888 0.08070804 117.55156 0.935811391
#> 2 Gender -0.3805856345 0.41415200 -0.91895159 146.75220 0.359628848
#> 3 Smoking 0.0845463928 0.33966342 0.24891227 148.70159 0.803772107
#> 4 Function -0.1374798284 0.04319862 -3.18250481 139.48225 0.001800351
#> 5 JobControl 0.0041118444 0.01971262 0.20858942 127.20214 0.835102412
#> 6 JobDemands -0.0006738983 0.04015484 -0.01678249 62.74426 0.986663390
#> 7 SocialSupport 0.0446974652 0.05779249 0.77341301 116.79890 0.440840494
#> OR lower.EXP upper.EXP
#> 1 1.2176853 0.00969936 152.8716779
#> 2 0.6834610 0.30147805 1.5494295
#> 3 1.0882233 0.55619071 2.1291798
#> 4 0.8715519 0.80020399 0.9492614
#> 5 1.0041203 0.96570654 1.0440621
#> 6 0.9993263 0.92226438 1.0828274
#> 7 1.0457114 0.93261800 1.1725191
Back to Examples
library(psfmi)
library(mice)
imp <- mice(lbp_orig, m=5, maxit=5)
#>
#> iter imp variable
#> 1 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
data_comp <- complete(imp, action = "long", include = FALSE)
library(psfmi)
pool_lr <- psfmi_lr(data=data_comp, nimp=5, impvar=".imp",
formula=Chronic ~ Gender + Smoking + Function +
JobControl + JobDemands + SocialSupport,
p.crit = 0.157, method="D1", direction = "FW")
#> Entered at Step 1 is - Function
#>
#> Selection correctly terminated,
#> No new variables entered the model
pool_lr$RR_model_final
#> $`Final model`
#> term estimate std.error statistic df p.value OR
#> 1 (Intercept) 1.2214174 0.46033589 2.653318 151.7147 0.0088191936 3.3919922
#> 2 Function -0.1398556 0.04104929 -3.407016 151.3840 0.0008414066 0.8694838
#> lower.EXP upper.EXP
#> 1 1.3660466 8.4225613
#> 2 0.8017495 0.9429405
Back to Examples