--- title: "Working together: mice and psfmi" author: "Martijn W Heymans" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Working together: mice and psfmi} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # Introduction The `mice` function is one of the most used functions to apply multiple imputation. This page shows how functions in the `psfmi` package can be easily used in combination with `mice`. In this way multivariable models can easily be developed in combination with mice. # Installing the psfmi and mice packages You can install the released version of psfmi with: ``` r install.packages("psfmi") ``` And the development version from [GitHub](https://github.com/) with: ``` r # install.packages("devtools") devtools::install_github("mwheymans/psfmi") ``` You can install the released version of mice with: ``` r install.packages("mice") ``` # Examples + [mice and psfmi for pooling logistic regression models] + [mice and psfmi for selecting logistic regression models] ## mice and psfmi for pooling logistic regression models ```{r} library(psfmi) library(mice) imp <- mice(lbp_orig, m=5, maxit=5) data_comp <- complete(imp, action = "long", include = FALSE) library(psfmi) pool_lr <- psfmi_lr(data=data_comp, nimp=5, impvar=".imp", formula=Chronic ~ Gender + Smoking + Function + JobControl + JobDemands + SocialSupport, method="D1") pool_lr$RR_model ``` Back to [Examples] ## mice and psfmi for selecting logistic regression models ```{r} library(psfmi) library(mice) imp <- mice(lbp_orig, m=5, maxit=5) data_comp <- complete(imp, action = "long", include = FALSE) library(psfmi) pool_lr <- psfmi_lr(data=data_comp, nimp=5, impvar=".imp", formula=Chronic ~ Gender + Smoking + Function + JobControl + JobDemands + SocialSupport, p.crit = 0.157, method="D1", direction = "FW") pool_lr$RR_model_final ``` Back to [Examples]